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The behaviour of the propagation funetions of quantized field theories at small distances is investi-
gated in connection with the problem of consistency of the perturbation theoretical renormalization
scheme. An attempt is made to adapt the conventional Hamirroxian and S-matrix formalism to the
renormalization concept in such a way that a finite theory of interacting physical (dressed) particles
results which as a whole and at each step of approximation satisfies the axioms of the general struc-
ture theory of quantized fields, notably causality and positive definiteness. If the phyvsical particles
of a field theory with point interaction are extended objects owing to the extension of the cloud of
virteal quanta in the physical states, then the theory admits of a finite formulation with the extent
of the cloud introducing a natural, coupling-dependent built-in cutoff. The limiting case of a point-
like cloud corresponds to physical particles which because of their strong self-interaction do not inter-
act with one another. This case, corresponding to the zero coupling limit, represents the most singular
one given by the theory. An increase of interaction or coupling implies an increase of the size of the
cloud and a corresponding charge spread. Conversely, there cannot be interaction if there is ne
extended cloud and charge spread. Cloud and charge structure come in via causal form factors related
to vertex parts and electromagnetic form factors, which however a perturbation theoretical scheme
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cannot take into account.

1. Intreduction and Discussion

1.1, Phenomenological Considerations

It the physical particles of a quantum field theory
with point interaction are extended objects owing to
the extension of the cloud of virtual quanta in the
physical states. then the theory should be finite if
it is formulated in such a way that the size of the
cloud introduces a natural built-in cutoff. The theory
then also should be convergent in an approximative
description which at each step accounts explicitly and
in a mathematically consistent way for the extended
cloud structure of the particles, The conventional
perturbation approach to quantized field theories
does not have this property: Since the perturhation
approximations o the vertex function do not vanish
sufficiently rapidly for large momenta. the domi-
nating contribution of virtual quanta with arbitrari-
lv high momenta causes the cloud of the physical
particles to be point-like (see sections 3 and 4). This
manifests itsell in a divergent! wave function nor-
malization factor Z ™! and implies a mapping of the
approximate theory into a free one by renormaliza-

* Work done under the auspices of the German Federal
Ministry for Atomic Encrgv, the International Atomic
Energy Agency and the DBrazilian National Research
Council.

** Authors’ present address: Max-Planck-Institut flir Physik
und Astrophysik, Miinchen, Germany.

Y The wave function renormalization Z—1 conld diverge also

tion if one insists that the theory have the correct
axiomatic structure. The reduction of the interaction
to zero sometimes is reinterpreted in terms of ghost
states by reintroducing interaction at the expense
of destroying the axiomatic structure of the theory.

At first sight, the observable corrections to the
Covroms potential due to vacuum polarization in
quantum electrodynamics would seem to contradict
the statement that perturbation approximations onlv
contribute a point-like cloud to the phvsical particles
since those corrections result alreadv from the for-
mally renormalized, non-iterated electron-positron
bubble. However. within the frame of an axiomatic
local theory the bubble approximation of the photon
propagator (and any finite-order iteration of it)
cannot be renormalized in a consistent and not only
formal way unless both the renormalized and the
unrenormaziled coupling constants. g and g, re-
spectively, vanish identically. For a nonzero g. a
consistent renormalization within the considered
order of approximation requires the introduction
of a high-energy cutoff 1/2 such that the correspond-
ing approximate Z-factor [Z >~ 1+ g2log(mi)]

in case of a decreasing vertex function if the unrenorma-
lized coupling would turn out to be infinite. This would
not necessarily imply a free theory. Tn what follows, if we
refer to a divergent 27! we suppose this divergency to be
due te an insulficiently rapidly decreasing vertex part or,
more generally, absorptive part of the (renormalized) pro-
per sclf-cnergy.
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comes arbitrarily close to one. This presupposes of
course that the exact local theory be mathematically
well-defined for g2 >0 (for the contrary case cf. the
later discussion) and that the cutoff does not make
itself felt for momenta much smaller than 1/.i.
Hence, within the frame of a consistent renormaliza-
tion formalism the observable corrections derived
from the bubble approximation appear as being due
to the fact that the cutoff reveals the cloud structure
of the physical particle for distances much larger
than 2. However, the main contributions to the re-
normalization effects —in particular, the magnitude
of the normalization factor Z which connects g and
gy by g2 =2Z(z) g,® — are determined by the cloud =
structure in the region 0 < r <€} which owing to
the cutoff can never be attained. Any finite order
iteration of the bubble approximation obviously
gives rise to the same situation. It is however only
the sum of all the iterations of proper diagrams that
can be renormalized consistently without the neces-
sity of Z being kept close to one. In the local limit.
/4~ 0. renormalization of the totally iterated bubble
approximation implies again the vanishing of the
renormalized coupling. g = 0. if the theory is to he
axiomatic. but this time for any real (finite) un-
renormalized coupling g in contrast with the finite-
order iteration where both g and g, must vanish
simultaneously, This situation persists also for
higher approximations.

Consequently, the conventional perturbation ap-
proach explicily admits of the possibility that
g0 g0 = g¢(0) 0 {and finite) for g— 0. If this
is so0, then the local interaction HaaiLtoxian H' =
go(g)H does not vanish as g— 0 (at least to the
extent that all proper totally iterated diagrams up
to any finite order are considered). This implies that
in the limit g— 0 the Hamittosian H' gives rise to
physical particles which in virtue of their strong self-
interaction do not interact with one another and
thus are characterized by vanishing renormalized
charge. g-=0 and Z=0. and by free propagators.
This rather singular type of a free particle may he
visualized as consisting of a point-like core the
tharge gy = 0 of which is completely compensated,
so as to yield g= 0. by that of the surrounding but
(in the limit g— 0) still point-like cloud due to
vacuum polarization (i, e., by the charge g — g,(2)
— - gy). 1T the physical particles of the exact local
theory possess an extended cloud structure. then the
size of the cloud of a particle must depend on the
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coupling and shrink to a point as g— 0 if the exact
theory is supposed to reveal the above perturbation
theoretical result in the limit of vanishing coupling
where only the self-interaction remains [g,(0) # £ 0].
This implies that the exact theory is singular at zero
coupling. though finite for g”>>0. since owing to
the assumed persistence of g==0 for g°— +0. the
exact Z-factor behaves as Z7'=c'g®+0(g?) as
g*— +0 with ¢ = gy2(0) +0. Hence, in accordance
with the evidence provided by perturbation theory,
no coupling-constant expansion of Z7! is possible
although a perturbation approach may supply an
asvmptotic representation for the exact propagator.
However. as we shall see. an asymptotic expansion
can be obtained only at the expense of destroving
the cloud structure of the particles and even then
only if the original perturbation formalism exhibits
logarithmic divergences. Nevertheless, from this
point of view the physical usefulness of the formally
renormalized non-iterated bubble approximation
could be understood. Evidently. if the weak-cou-
pling limit g— 0 with the corresponding point
cloud represents the most singular case in the
theory. then the increase of g* will introduce inter-
action via convergence-producing form factors (re-
lated to the vertex function and representing the
extended cloud (or charge) spread of the particles)
which however a perturbation theoretical expansion
cannot take into account.

1.2, Outline of the Program

In the present paper. an attempt is made to adapt
the conventional Hasrrovian and S-matrix formal-
ism to the renormalization concept in such a way
that a finite theorv of interacting physical ( = dres-
sed) particles results which as a whole and at each
step of approximation satisfies the axioms of the
general structure theorv of quantized fields. The
postulates of the axiomatic theory?, notably cau-
sality and positive definiteness condition. imply that
the propagators of the particles given by the theory
have the correct analytic structure in the cut cnergy-
plane. The existence of the axiomatic (and. there-
fore, renormalized) theorv implies the existence of
the unrenormalized one unless Z = 0. The three
concepts, “extended cloud (or charge) structure of
the physical particles™. “correct analvtic structure”
T A8 Wisntaax, in L Les Problemes Mathimaliques de la

Théorie quantique des Champs™, C.N.R.S., Paris 1960,
p. L.
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and “mathematically consistent renormalizability™
of the propagators for non-vanishing interaction are
essentially equivalent. By starting from a perturba-
tion approach — actually the only one which has pro-
ved feasible for obtaining explicit results —we first
account preliminarily for the fuhwe cloud structure
the particles will get by the interaction by intro-
ducing an arbitrary cutoff (4) into the original local
interaction Hamiitonian (which, however. will be
needed only as a generator of selection rules). The
approximated unrenormalized propagator which in
virtue of the cutoft has the correct analytic structure
is then adapted to the axiomatic renormalization
concept for arbitrarily large coupling (section 2).
To each approximation there corresponds a modified
HamiLrosian that coincides with the initial one (with
cutoff) for small coupling but contains an additional
however well-determined form factor for large cou-
pling. This reflects itself in a splitting of the func-
tion g7 (g*) into two branches (see Fig. 1a}. In the
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Fig. 1 a. The function g, (2”1 in the axiamatized cutoff theor
[2 2 0. g ti— O for & — 0].
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Fig. L. The function g,%1¢*) in the axiomatized theory with-
out cutofl (limiting casc of Fig. 1 a for 2 — 0. where
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limit of vanishing catoff (72— 0) the first braneh
shrinks to the point g:=0 while the second one ex-
tends to the whole region g2 >0 (see Fig. 1 b1, Cor-
respondingly. the original local interaction Hawir-
roxian H =g, [l defines the approximated theory
only for g« 0 while for g2 >0 the theory is dexcrib-
e in terms of a modified. apparently nonlocal
Hasicrosian H'[F] which differs from the local
one. H =1 {o). by a uniquely determined special
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form factor F=F(r, g7} which in principle can be
caleulated explicitly. F(x, g%) depends explicitly on
the coupling. has an essential singularity at g =0
and F-»48(x) asymptotically for g2—» 40. To
each approximation -- various possibilities exist for
proceeding to higher approximations — there cor-
responds a new form factor, F=F,.
of F, tending to 0 (x) as with increasing n the ap-
proximations to the exact proper self-energy become
better so that in the limit n—— oo the sequence of
nonlocal Hamirtonians H, = H'{F,] tends to the
local interaction H = H'[4]. Since F— ¢ for g2 —
-+~ 0. already the first approximation (axiomatized

the sequence

iterated bubble approximation) may be expected to
give at least a qualitative information about the
small distance structure of the exact theory for suf-
ficiently small coupling.

1.3. Discussion of the Results

The axiomatization of the Hamizroxian formalism
furnishes the absorptive part of the approximate
proper self-energy supplied by the asvmptotic part
H of H', with a uniquely determined calculable
high-energy cutoft F,=F,(p, 1. In virtue of these
F, the approximations to the exact spectral function
of the propagator decrease sufficiently rapidly for
large momenta to vield a finite wave function nor-
malization Z7! for 7> 0. In the axiomatic theory
the primary quantity is indeed the spectral function
of the propagator and not the absorptive part of the
proper self-energyv although in the Hauicroxian and
S-matrix formalism it is just the other way around.
Both quantities become now functionals of £, .
While the axiomatization formatism gives first of
all those F, . the form factors F, in the approximate
Haseroxians 77| F,] ave functionals of the £, and
must be considered as heing deduced quantities
which mainly serve for purposes of visualization.
We do in fact not know whether a consistent super-
position in JI'[F] of form faetor contributions that
originate from different tvpes of axiomatized pro-
pagators thoson and fermion) actually is possible,
A dectsion of this question ix dilticult since the
axiomatic approximations necessarily ere non-addi-
tive in contrast with the non-axiomatic perturbation
approximations in which however the form fuctors
do not appear at all. The sequence of finite axio-
matic theories, which eventually converges to the
exact local theory. has just the singular strocture
at zero coupling that we have guessed above (sec-
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tion 3). Both F, and F, have an essential singularity
at zero coupling with F, — &, F,— 1 asymptotically
for g% — +0 and their expansions in powers of g
reduce to d(x) and 1 respectively. Hence. the form
factors do not give rise to any Frynmax diagram in
a coupling-constant expansion of the S-matrix per-
taining to H'[F,] which includes all proper totally
iterated graphs vp to any finite order, nor are the
form factors reproducable by a perturbation theo-
retical approach. The formally renormalized non-
axiomatic (approximate) propagators obtained from
2 perturbation theoretical treatment of the local
theory, therefore. turn out to be asymptotic repre-
senfations (for g7-> 4+ 0) of the axiomatic propa-
gators supplied by the new approximation scheme.
The propagator given by the first step of the scheme
coincides with the one obtained recently by Rep-
Moxp 3 and Bocoriusov et al. ¢ in a formal way from
a selected infinite set of graphs by summing the
associated spectral functions. Qur higher approxi-
mations, however, give rise to different possibilities.
The introduction (into the Hawirtovian) of form
factors which do not contribute to formal series ex-
pansions in powers of g2 and the requirement of
asvmptotic coincidence of perturbation theoretical
and axiomatized propagators can indeed be taken
s a starting point for putting BocoLirpov's purelv
formal method on a mathematically rigorous and
physically meaningful basis 3, Repyoxp's techniques
evidently rests upon the assumption that the exact
local theory exist, This assumption needs not to be
made in the theory proposed in this paper: Our
formalisms still works even il the local theory does
not exist, in which case the formalism automatically
amounts to a modification of the theory accarding
to the underlying principle of physical particles
which possess an extended cloud structure and a
probabilistic charge spread in consequence of the
interaction. This new theory will then have the
formally renormalized but axiomatically inconsis-
tent local theory as an asymptotic representation
(for arbitrarily weak coupling) in case the latter
exhibits logarithmie divergences. This applies in

* P.J. Repyoxn, Phys. Rev. 112, 1404 [1958] and pre-
prints. — P.J. Repyovp and J. L. Uretsky, Nucl, Phys.
12, 185 [1959]. 1t is one of the purposes of this paper to
give a physical interpretation to Rensoxnn’s work. The
authors are grateful to Dr. Repsoxn for communications
in advance of publication.

N. N. Bocourusov, A. A, Locrsov, and D. V. Suirkov, pre-
nrint, Dubna 1939,
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particular to the LEe model % where the local inter-
action defines an axiomatic theory only for g = 0,
Evidently, even if an exact local theory would turn
out to define a consistent scheme but would lose its
physical meaning at small distances. the suggested
approximation sec.eme might prove useful in a mo-
dification of the theory that accounts for the struc-
ture of the physical particles and eventually intro-
duces new degrees of freedom but still preserves
the selection rules and graph schemes which govern
the original local theory., |

The original local interaction Hawirrosian H’
acts first of all as a generator of selection rules and
of graph schemes (via the formal S-matrix expan-
sion} but it does not necessarily determine the
space-time structure and the interaction of the physi-
cal particles if the theory is to be axiomatic. i. €.,
if one requires the physical particles to be dressed
and to interact according to the same rules (ef.,
e. g. the Lee model). To generate graph schemes H’
is needed only in the limit of vanishingly small g*
and taking this as a correspondence principle the
theory may be determined for larger values of g2
by imposing the general structure axioms. However,
for >0 it is onlv due to the presence in H'[F]
=& F*xH7 of a form factor F 49 that the local
Haviwroxian H = H'[9] = g, H becomes efficient in
a power-series representation of the S-matrix since
the effect of H* alone would only conzist in furnish-
ing the particles with a point-like cloud correspond-
ing to Z7' <~ and to free dressed particles. In
virtue of the essential singularity at zero voupling.
the form factor F in the approximate Hamiiroxian
H'[F] does of course not contribute to the qualita-
tive propagation scheme supplied by the asvmptotic
part H of H'[F} =F % H', and F and F should be
interpreted as being a measure for the extent and
the internal structure of the cloud of the interacting
physical particles. It should indeed not be consider-
ed surprising that an axiomatized approximation
scheme approaches the exact local theorv in terms
of a sequence of pseudononlocal® Hawizroxians:
If the interacting phvsical particles of a local theory

* JL A Swieca, Nucl. Phys., to e published. This paper will
be referred to as TL

® T.D. Lz, Phys. Rev. 95, 1329 [1954].

7 The symbol % means the convolution product in coordi-
nate space.

5 That is to say, S{H'}=S{H'[F]} in an evpansion of the
S-matrix in powers of g7 .
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with point-interaction possess an extended cloud or
charge structure via the internal form factors de-
fined by the exact (renormalized) vertex function.
then the interaction between the particles must be
expected to become a visibly nonlocal one (in the
sense of a nonlocal Hawinroxian only!) if an ap-
proximation to the exact vertex function is made
which although depriving it of (part of) its internal
form factors still maintains the extended cloud struc-
ture of the particles. 1f, in particular, one starts
from a perturbation approach and requires the for-
mal S-matrix expansion pertaining to H' to coincide
with that one pertaining to H'[F], then the form
factor F into which (part of) the effects of the exact
vertex are reintroduced obviously must have an
essential singularity at zero coupling. From the gen-
eral structure of the absorptive part of the proper
self-energy it can be seen that the F,(p, g%) play in
fact the role of a vertex part or that of a contribu-
tion to the exact vertex. That is to say, if the se-
quence of approximate theories converges to the
exact local theory — the question of convergence be-
ing of coursc as open as that of the existence of the
exact theory —then the effects of the form factors
Fo > Fy will be transferred into the exact vertex func-
tion or into the internal form factors defined by the
lutter. It should be clear, therefore. that if the exact
lacal theory exists, these dynamical form factors
have as littie to do with the kinematical form factors
of non-local field theories as the vertex part of local
theories has. F,(p, g} is by construction a causal
form factor in the sense that the vacuum expecta-
tion value of the commutator (defined via the axio-
matized propagator) vanishes at space-like distances.

If one attempts to axiomatize a Haaivrtoxian for-
mulism one obviously is faced with the problem of
reinterpreting —rather than eliminating — the con-
cept of bare particles. Since axiomatization means
essentially consistent renormalization. this problem
becomes relevant only if Z=0 in which case the
passage from renormalized to unrenormalized quarn-
tities is not possible. What can be done at most if
one insists on dealing with physical particles only
(without referring to the problematic nature of field
operators and bare particle states) is to compare
cloud or charge structures for different values of
the coupling. The fact that the structure function F
(and similarly F, F, and F,) gives a measure for
the extended charge structure of the physical par-
ticle and the statistical nature of the form factors
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is borne out by a projection of “bare with respect
to physical vacuum” — states onto physical particle
states in which the form factors play the role of
weight functions (section 4). It follows quite gen-
erally from this projection that a finite normaliza.
tion factor Z7%, 1. e.. a sufficiently rapidly decreas-
ing vertex function?!, leads to physical particles
which have an extended cloud or charge spread
whereas an infinite Z71, i.e., an insufficiently ra-
pidly decreasing vertex function, renders the cloud
of the physical particles to be point-like. In the
axiomatized theory, the form factors F and F (resp.,
£, and F,) give rise to a finite wave function nor-
malization Z7!(g?) for g2>0 and, therefore, to a
cloud of finite extent which shrinks to a point {the
one defined by the bare quantuum) in the limit
g>— +0in which Z7'— 4 oo and F-» 6, F—1,
This permits the interpretation that it is the point
structure of the cloud that actually causes the van-
ishing of the interaction. The resulting free (dres-
sed!) physical particle — it is of course not identical
with the bare one — behaves in virtue of its singular
structure like an uncharged object that carries in
itself the potentiality of evolving into a charged
particle with the increase of the dimension of the
cloud. This evolution is described by the structure
function F(xr, g%) or, equivalently, by F(p, g%). The
dynamical form factors impart to the free uncharged
physical particles at the same time both a charge
capable of interaction and a probabilistic charge
spread {or cloud structure; the latter being super-
imposed to the kinematical {mass-) spread the free
particles possess in virtue of the combination of re-
lativistic and quantal properties, Hence. there can-
not be interaction (and;or charge) if there is no ex-
tended cloud (or charge spread) and vice versa. It
is clear, therefore. that the £,. F, are the physically
relevant quantities. As has been pointed out before,
these form factors actually play the role of contribu-
tions to the exact vertex part, into which their ef-
fects will finally be transferred, and it is therefore
not surprising that they are intimately related to
quantities such as the familiar electromagnetic form
factors {cf., section 4.2). In an expansion in powers
of g* one obviously destroys and neglects the cloud
and charge structure of the physical particles simul-
taneously with neglecting higher orders in g (also
if totally iterated graphs are accounted for) thereby
eliminating at the same time interaction at all. In-
stead, a physically meaningful expanszion must be
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one in powers of the charge structure part g, F (x, g2)
of the approximate interaction Hasironian H'[F)
=gy ¥ x H, thereby taking account of the faet that
falso in the exact theory) the interaction should
come in via the spread rather than via the numerical
value of the charge.

The point cloud obtained in the limit g2— +0
(where F— 0) obviously is the smallest structure
whose support has a non-negative measure (r= + 0)
and the ghosts sometimes conjured up (instead of
zero interaction) just arise from ignoring that the
point cloud sets a limit to the procedure: An in-
version of the sign of the CovLoms potential at small
distances (as if a support of negative measure would
appear) and a corresponding violation of the posi-
tive definiteness condition in Hiuert space are in-
cvitable consequences.

It is important to notice that for g2 — « the ap-
proximate propagators pass into free ones while the
approximate Z-factors tend to one. This apparent

“freezing-in” of the vacuum requires a reinterpre-
tation since F,->0. and F,— 0 and likewise
H'[F,]—0 as g®— ~ , although the successive
approXimations may he e\pmted to be reliable only
for bounded values of & . The reinterpretation
amounts to the introduction of an effective renor-
malized charge. g.{g%). at each step of approxima-
tion. with g* plaving now the role of an internal
parameter which characterizes the cloud structure
of the particles rather than a coupling, In the exact
theory reaching Z =1 for <ome finite g would seem
to mlp]\ the intervention of bound states. These
fuestions will be discussed when we compare our
results with those of Geri-Alaxy and Low?. At any
case. the fact that F, — 0 for g — o might lead
to the conjecture that also the exact vertex function
and the form factors defined by it vanish for large
& if. as it should be the case in an axiomatic theor\
the interaction causes the vanishing of the vertex
part and that of the form factors for infinite mo-
mentum transfer. Tn quantum electrodvnamies, the
non-locality certainlv will result in a lack of gauge
invariance. We do not consider this as being a seri-
ous defect of the approximation scheme as long as
there exists the possibility that the sequence of theo-
ries converges to the exact one in which the gene-
ralized Warn identity is satisfied. More precisely.
we take the extended cloud structure, charge spread

* M Cerr-Maxy and F K, Low, Phys. Rev. 95. 1300 |195 .
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and consistent renormalizability to be of higher im.
portance then the preservation of a local continuity
equation. Dn the other hand, after all what has heen
said before. it may be asking 1o much of an approx-
imate theory to satisfy all the requirements of the
exact local theory.

2. Renormalization in Terms of Dispersion
Relations

To account for a consistent dressing of the phy-
sical particles and to render the renormalization
process mathematically meaningful. we define the
local hermitian interaction Hamiitoxian

H =gy Hix) (2.1)

by the limit of the nonlocal Haswroxian H'{_1]:
H'=Yim H'[A) =lim A(z, i}y % B (z).  (2.2)
48 A0

Here, .1(x. 2) is a real auxiliary cutoff function with
A= 38(x) for 7— 0 and the symhol * denotes the
convolution in coordinate space so that

Sx H = H'[] =

In relativistic theories where. for example.

H: H O”[I).
k23
_l*H'

means

g., f (Il de,) e —ay.0—29... .. A0, (x,)

whereas in the Lee model .1 acts on the F-particle.
In subsection 2.1 we restrict the discussion to the
V-particle propagator of the Lrz model and to the
totally iterated bubble approximation of a rela-
tivistic boson propagator postponing generalizations
to subsection 2.2, The following notation will be
used: In the relativistic case. M denotes the square
of the renormalized boson mass, pky— k2 while
the variable m in the various spectral representa-
tions has the dimension of the square of 2 recipro-
cal length (we use A=c=1). In the Ler model.
i (h\:lot& the renormalized mass of the \ particle.
the variable m has the dimension of a reciproeal
length and p-—-E. The constant a >0 denotes the
lower bound of the conttiuous part of the mass
spectrum, 0 < <a, p generally is supposed to
be a complex variable and the physical propagators.
self-cnergies ete. are defined in the usual way as
bounddr\ values of the corresponding functions of
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p (i.e. for a real p 2 a, a vanishingly small posi- By starting from the conventional Hawmritonian

tive imaginary part is to be added to p in the in- and S-matrix formalism, the unrenormalized boson

tegrals defining propagators etc.). or V-particle propagator in momentum space in the
cutoff theory is given by

2.1. Axiomatized Iterated Bubble Approximation Gulp) =[p—M—K:(p) +0M:]"1 (2.6

Let K(p) be the divergent lowest order unrenor-
malized proper self-energy of the particle in the
local theory with K(M) =~ , K'(M) = « {in the
Lee model, K represents the exact expression, of oM, =Ki(M). (2.6a)
course). Suppose A to be such that K (p) is given
by the limit of the corresponding finite unrenor-
malized self-energy Ki(p) of the cutoff theory (de-
fined by H'[1]), viz. K(p) =lim K; {p).

where the mass renormalization has been carried
out according to

The cutoff function A{m, i) will therefore be chosen
such as to make K;(p) — M, finite ", Hence, the
unrenormalized propagator (0 < gg? < ~)

i~0 ! 2 dm o Mo
Ki(p) has the spectral representation Guilp) = Go/ 11 80 dm 0i(m) [ (p —m) im — ‘U)J
a

Kilp) = [dm g o:(m) ! (p—m) (2.3) (2.7)
a has no singularity in the complex p-plane cut from
. ; X = = he pole at p=M of the free

;ith o . A2 ,/,20. 2. p=atop oo except the p P
wit 0i(m) = o(m) (m, 2) ' (2.4) propagator Gy=1/(p~M) with residuum Z;—
the absorptive part of K being given by 1/(1 ~ Ki'{M)) ; in particular. G, has no ghost pole,
ofm) =limo{m) = 0. Therefore. by Cavcny’s theorem. with the path of

AN

integration taken along both sides of the cut and
Here. .1{m. 21 2 0 is the cutoff function of the self- closing by an infinite circle, what gives the contri-
energy induced by the cutoff .({x, ) of the Hay- bution

Toxian H'[L1} with A->1 for Z-»0. Generally. 2iImGu= —2{1G; T Tm G}
-Lis a functional of .1, = —2a:ig 01, G %,
w2y = T{Alm, 2y 5 2]. (2.3)  the unrenormalized propagator satisfies the relation
In the Lee model, .1 is essentially the Fourizr ) o b Y - .
transform of L[ (A2 4 1) 2, i]. # and /t being Culpr =ZiGy— | dmg? oilm) G (m) % (p A)m.)
the masses of N and € particle respectively and (2.8)
a=zcit olm) = [{m—xn)2— 2], for all p land for a‘ll \'alges 0 < go* <~ of the un-
renormalized coupling g,%.
In the case of a velativistic boson propagator, .1 acts From (2.8). the renormalized propagator.
on the two spinors in H' and is related with .1 Gi(p) = Zi L Gu{p) i2.0
through a double integral equation, In (juantum ~

electrodynamics and ps meson theory, oi{m), a. and = GU/ [ 1—(p-H)g j dmoitm) ! (p—m) im — )
. . ¥ . it *
the unrenormalized coupling g,* = 0 are given by ] _
S, o 15 seen to satisfv the axiomaticallv correct relation
v=(m=2m?>) (1 —4m2m)", : :

=
+ B e . E . - . B S e N
a=4mz= gt=e)%12 2 Gilp) =Gy+ [dmg2o.(m) Gi(m) 2p—m)
and i (2.10)
ks
o o ) ¥ catr ] . : 227
o= (P ) O (m— A m?) with the }enOtma]lze.(l coupling g% = gy Z: 11 heing
s o . aow restricted to the interval
a= (3% go'=g3, ha? ~
\ e o I
i 0<% <pg2() z[ dmos(m)/ (m — A2 b
respectively where. m,, m, and 1 are the renormal- g g 4) L;! sHmhi
ized electron. nucleon and meson masses. (2.11)
" Rame propertics of the cutoff theory are discussed in the ' Tn the considered approximalion, this relation will be used

Appendix. also in ps meson theory.
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The rather trivial relations {2.8) and (2.10} may
be considered as integral equations for or as inte-
gral (1. e., spectral) representations of the propa-
gators. Equ. (2.10} has been derived by LSZ 12 120
~in a less trivial way — from the general require-
ments of axiomatic field theory what justifies the
fundamental role played by (2.10) in an attempt to
axiomatize a Hamirtoxian formalism. In fact, as
will become clear in the following, extended cloud
structure of physical particles, mathematically con-
sistent renormalizability of the propagators for non-
vanishing coupling and correct analytic structure of
the propagators imply each other mutually.

I the restriction (2.11) is kept. then, since
&%= 0 in the local limit 21— 0, (2.10) implies
{7i— (. To escape this mapping of the theory into
a free one '3, the original formalism must be extend-
ed by the inclusion of a continuation principle which
releases the theory from the limitation imposed by
(2.11), thereby providing a continuation to values
g>>g” (to g2>0 in the local limit) of the propaga-
tor defined by (2.9) for g2<g€9.AThe well-known
ghost propagators C:';_(p] and Gip)= }imné;.(p)
which cease to satisfy (2.10) for g2>g.? are just
the result of such an extension: (:';.(p) follows by
continuation to values g”>g.? of the propagator
Gi(p) given by (2.9) and (2.10), i.e.. of the in-
tegral on the right side of {2.10). by simply drop-
ping the condition (2.11). This continuation ob-
viously contradicts the positive-definiteness condi-

122 1. Lunvass, K. Sesaszie, and W Zivaerdaxs, Nuovo
Cim, 2. 425 [19533]. By considering the quantity
g% 0, G; % in the integrand of Eq. {2.10) as a given func-
tion, the r.h.¢. of the equation is an integral representation
for G;{p) of the Lewyass-KirLEs type; cof. H. Lemvaxy.
Nuovo Cim. 11, 342 [1951]: G. KiwrEx, Helv., Phys. Acla
25, 417 [1932]. It is worth mentioning that the essential
results of the present paper also remain valid if subtrac-
tions are included into the representation of the pro-
pagator.

12h Tt i3 perhaps not uninteresting to notice that there exists
a verv close analogy hetween the field theoretical forma-
lism presented in this and in the next section and the for-
malism used for the description of the axiomatic theory of
linear relaxation systems. Even the lowest-order spectral
functions of both theories are almost the same. Cf,
B. Gross, Nuove Cim. 3, Suppl. 2, 235 {1953]: B. Gross,
Theories of Viscocelasticity, 1’aris 1953: W, GUtTiveer and
B. Cross, to be published.

¥ 1., D. Lasoav, in . Niels Bohr and the Development of Phy-

stes™, edited by W, Pacwr, London 1935,

It should he clear that the appearance of a ghost-effect is

always the result of a continuation procedure (afthough

such continuation sometimes is made only tacitly). In the

Lee model, a direct ealculation of the cigen-states of the

14
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tion of the axiomatic theory and the correct charge.
cloud structure of the particles 4, It is precisely this
continuation procedure which is implicitly perform.
ed in the conventional purely formal renormaliza.
tion of the power-series representation of the S.
matrix and in the formal perturbation theoretical
solution of the LSZ equation system '°. Actually, as
we have seen, a mathematically and physically con.
sistent renormalization of the local theory (within
the frame of axiomatics) implies vanishing inten
action in the approximation considered.

However, the necessity of an extension of the
theory by a continuation principle being recognized,
it is clear that the only continuation process that
guarantees the axiomatic structure of the resulting
propagator for all values g*> 2> 0 consists of a con-
tinuation into the domain g”>>g.* of the integrand
of the integral representation (2.10), i.e., of the
spectral function o1{m, g°) given for g°<g® by

gi(m, g?) =g2oi(m) ' Gi(m)® :
= [Bi{m, g%) [a{m—~ ] (2.12)
{42 (m, g% + Bi*(m, g%)]

where
Ailn, gy =1 (m—-W)per (2.13)
- I dsg?oi(s) [ (m—3s) (s —M)?]
a
and Bilm.g%) =agtvi(m) (m—M). (2.11)

Then, the right side of (2.10} pas=ses into a defini-
tion of an axiomatically correct propagator G (p)

Hasitoxian shows that ghost states appear onlv if a con-
tinuation of the unrenormalized coupling constant to
imaginary values is made whereas one arrives at zero
interaction if one insists that the coupling be real! and
thereby renounces a continuation concept. That ghosts
may arize in approximations to an exact axiomatic theory
is due to the fact that the renormalization effects and the
cloud structure of the physical particle are governed by
those higher-order eflects which the approximations do
not yet include. In this case, the continuation (for a given
2% 2» 0) which yields ghosts is the one in the variable r or
p of the approximate propagators into domains for which
the approximations cannot vet L thrusted since thev do
not include the renormalization effects that become impor-
tant in these regions. Then. to avoid ghosts one lhas to
modify the concept of the Fovrier transform operation by
changing the integration measure into one depending on g
This is of course equivalent to introducing a coupling-
dependent form factor, Thus, in any case. the entire diffi
culties seem 1o originate from the {act that an arbitrarily
weak coupling, defined by an arbitrarily small g, may be-
come arbitrarily strong the smaller the space-time region
becomes in which the interaction takes place,

15 H, Lenmaxs. K. Sywaxzie and WL Zivoeraasy, Nuove Cin

1,205 {1955].
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which coincides with G:(p) for g* < g.*:

Ge(p) =Gy + / dmou(m,g%)/(p—m) (2.15)

for all g 20 where the funetion
i lm, g% 2 0 is the (analytic) continuatiuz in the
variable g* of 6i(m, g°) to g* > g2

Let p=pi(g®) be the ghost nole. viz. the solution

of the equation

spectral

Go(pa)/(fi.fpi) =0
The residuum of ég(p) at this pole is given by

Vi(g2) = Res (Gi(p)) =g [d(pr— M) /dg®)/ (pi—M).

p=r; (2.17)
This is a particular case of Eq. (2.52). Since
(m(p) =Gi(p)y for #P< g2 it follows that for
g2 =0

Guilp) = Gilp)

(2.16)

—Nil(g®) O(g" -/ (p—pi).
(2.18)

We shall prove in the Appendix that G.i(p) has no
£eros in the cut p-plane.

From (2.13) G is seen to satisfv the relation
Geilp) =G, (2.19)

— ;‘ dm g” oilm) F:2im. g%, Galm) 2 {p —m)
for all g2 > 0. 220, with the g-dependent form
factor
Film, g%) = 6}.(”1)/6(‘}. (m} (2.20)
=1 +24,C+C* {42+ B2)] 12

Here, A; and B; are given by (2.13. 14) and C; is

defined hy

Cilm, g%) = —NiO(g®— g.2) (m — M)/ (m —p:).

{2.21)
Since Geifp) =0 in the cut p-plane. it follows from
12.19) by a reversion of the argument similar to
the one used in passing from (2.7) to (2.8) that
Giilpy can be represented for all g2 > @ by the
expression obtained from the right side of (2 9} by
substituting there g oilm) F2(m, g% for g2 oi(m):

Goilp) =G, | [ 1—(p— 3 .,-‘ dm g or(m) (2.22)

Fit(m, g5/ {p—m) (m- M)?

for g2 = 0.
By comparing (2.22) with (2.9} and taking ac-
count of (2.2), (2.4) and (2.5), it is seen that
Gui(p) represents a propagator which could have
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been obtained by renormalizing — without encoun-
tering restrictions upon g* —a theory described by
the non-local interaction HamiLroxian

H A% Fil= Uk F) xgo(g) H  (2.23)

with the particular g-dependent form factor

Ix F)(0) =T[.1(m, #) Film,g%) ;2] (2.24)

[where F£7 = Fi(x, g%) | which is a uniquely determin-
ed functional of the product of the auxiliary cutoff
A in the self- energy with the known function
Fi(m, g?) given by (2.20). g,(g% is defined by

g (g% =82 2.5 (g®) (2.25)
2 (g?) =1im (p— M) Gei(p) (2.26)
=

where

for g>>0and Z = 0. and one finds
Z:3 (8 = (1-g¥g2) ™! Ni(g?) O(g* - g2

(2.27)
=1+ ./‘dm g oi{m) Fi¥(m, g% | Gei(m) 2.
; (2.28)
Obviously, we have
Fi{m, g% =1 ] for g?<g2(7) (2.29)

) =8(z) |

and the original cutoff Hasivtonian H'|.1] coinci-
des with the new one, H'[.1 % F};], for g2 < gl The
uniquely determined Hasirronian H'[.1* Fi] de-
scribes the into the do-
main g*>g.* of the original theory which worked
only for g* < g As was to be expected. the super-
imposed form factor F;. which renders the theory
to be axiomatic also for g° > g.2. depends explicitly
on g. Of course. it would have been impossible to
start with .1=3(x), i.e. with the local theory.,
since then the spectral function in (2.12) would be
defined for £=0 only and no continuation [rocess
whatsoever would give more than just the free the-

Fi{x, &%)

“axiomatic continnation’

ory. However. for carrving out the continuation and
for constructing a unique axiomatized theory it is
obviously sufficient that a:{m, g7} be known f{or
arbitrarily small values of g2 and /. Hence. the local
H’, furnished with an arbitrarily weak cutoff. actu-
ally is needed only in the limit of vanishingly :mall
g% 1o determine the axiomaltic theory (via the con-
tinuation of the spectral function) for larger values
of g%

The behaviour of g, as a function of g (Eq.
{2.25)} 1s shown in Figs. 1 a and 1 b for 7 # 0 and
A— 0 respectively, These diagrams tell the whole
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story of the “axiomatization” of the Hamirron for-
malism in the most obvious way. The second branch,
g*>g (4), is in principle not attainable by the
conventional Hamiiroxian and S-matrix formalism
alone but only by the inclusion of the continuation
principle suggested by the general axioms of the
theory. A detailed analysis of the go®— g%-relation
for more general propagators will be given in II.
Passing now to the limit 2 — 0, thereby eliminating
the auxiliary cutoffs A and A (A— &, A— 1), we
obtain the propagator of the “axiomatized iterated
bubble approximation™ for all values g*>0:

C.(p) =lim Gai (p)

-

— Gy [dmg?o(m) |Clm) ¥/ (p—m)

=Gy+ [dmo.(m, g% /(p-m) (2.30)
=Cp) + 25/ (p—py)

ar

Go(p) = G{,/ :F 1—(p-2) Tdm 22 o(m) (2.31)

F2{m, %) [ (p—m) (m— M)
where
oclm, g%) = [B{m, g /xim - M)] {2.32)

(A% (m, g%) + B2 (m, g% ]
and
Fim, g =lim F,="G(m) /G, (m) (2.33)
=0

=[1+2AC+C2(42+ B2,
Here.
Alm,g®) =1—(m-M)pv (2.34)

'_/?cdsg2 o(s)/[{m—s) (s M2,

Bim.g%) =ag2o(m)/(m— M), (2.35)
Clm, g% =21 (g% (m— M)/ (m - py) (2.36)
are defined for g°>0 and py(g®) =limp; is the
ghost pole. i. e., the solution of the equation

Gy (py) /G (p) = 0.

The wave function renormalization is given by

Z:1 (g% = lim (p—- M) G.(p)

P> o0

{2.37)
=1+ fwdmgzg[m) [(3(m)j2

W.GUTTINGER UND J. A, SWIECA

or Z:' (g%) = — g2 (dpo/dg®) [ (py— M)

r 2,
=1+ [dmog(m, g?) (2.38)
a
which is firite for 0<g®< oo . Evidently, Z,=Z,
in the Lie model and Z,=Z; in Quantum Electro.
dyn amics or meson theory. G, satisfies the relation:

Colp) =Go+ [ dmg?o(m) (2.39)
P2 (m, g%) |G, [/ (p—m)

G.(p) obviously is the renormalized propagato:

of a theory described by the non-local interaction
Hamirronian

H'[F]=F(z, 8% *g(g) H(x)  (2.40)

with the special form factor F=lim A * F; =8 % F
i—0

being given by {2.23) with A —1:

F(x,g%) =T[F(m, g% ;z] (2.41) -

where #(m, g%) is given by (2.33).

Thus. the axiomatization of the local Hamittoxian
formalism results —to the order of approximation
considered thus far —in a uniquely determined non-
local interaction Hamirtoxian, H'[F]. with the spe-
cial g-dependent form factor F(z, g7). From (2.29)
and (2.20) it follows that -

F(z,g%) —d(x) | asymptotically

and .,
Fim, g% 1 [ for g— +0

(2.42)

and, therefore,
H'[F(z,g*)1 > g,/ H{z) as g2— +0 (2.43)
where g,' = g¢(0) = lim g,(g%) and

g*-=0

8 (8% = g2 Z: ' (g%). (2.44)
Hence, the original local interaction Haiirtoxian
H' =gy H with the particular finite value gy =g,
which in general is different from zero, is asympto-

tic limit for g2— + 0 of the nonlocal interaction
Hamirroxian H'[F] 18,

2.2, Generalizations

The essential point to consider if one attempts to
axiomatize Dysox’s formal perturbation theoretical

* The belief that a nonlocal structure is hidden in the for-
malism set up by Rzoamonp and Bocouvsov is already pre-
sent in the final part of Bocoriveov’s paper 4. After most of
this work has been done last year, we have been informed
by M. Scuéssere that Mepseney ot al have also obtained a
nonlocal HawiiTosian in the case of the Lz model by
starting from Bocoriusoy’s procedure.
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renormalization scheme without being lelt with =
free theory is that this scheme is mathematically
consistent only if it is supplemented by a continua-
tion principle that applies to the renormalized
charge in the approximate propagators. In particu-
lar, a continuation of the absorptive part of the
approximate self-energy gives rise to an apparently
local theory with ghosts and requires the introduc-
tion of an indefinite metric in Hireert space. On
the other hand, the axiomatically correct continua-
tion of the spectral function of the approximate
propagator gives rise to a theory with a uniquely
determined nonlocal Hamirtoxian. A definite g-
dependent form factor F # 3 will always appear in
H'[F] if the exact vertex function of the original
local theory does not vanish sufficiently rapidly for
large momenta. This is the case, for example, in the
Lee model where the above approximation already
represents the exact expression. Then our approach
vields a modified, however axiomatically correct
theory. In local relativistic theories we do not know
whether the interaction causes the exact verlex to
vanish at large momenta. The conventional pertur-
bation approximations to the vertex — via the self-
energy — do not have this property but in fact give
rise to the same situation as does the bubble approx-
imation considered above. The spectral function
@(m, g% of the exact renormalized proper hoson
{or V-particle) self-energy

Wip.g®)[Go=(p—M)? (2.45)
- [dm g2 Q(m, g) /[ (p~m) (m— M)?]

involves the vertex function according to 12

Qm, g%) =o(m) [ I'(m, g) [y P+ U (m, g2) (2.46)
where I'/y is the ratio of the exact renormalized
vertex function (for free particle momenta) to the
zerg-order vertex function. & 2> 0 is unknown and
0(m) has been given in section 2 (f'=y =1 in the
Lee model where U =0, I'=TI';, and y=y; in
neutral ps meson theory). In analogy with Egs.
(2.10, 11) the exact renormalized propagator

Glp) =Go/[1 W (p, g%)]

satisfies the relation

C(p) =Got [ dm g Q(m, &%) | G (m)F/(p—m)
@ (2.48)
(2.49)

:jclrng2(_7(m, gitm-M2<1,

(2.47)

it 1-2(g%) ~1(g?)
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=1 implies 0M = . The above relations also
follow from the axiomatic formulation. From (2.39)
and (2.46) it follows that G, (p) satisfies (2.48) if
we put I'=y F and U =0. Although this choice is
not unique, it still hints at the interpretation of £ as
a contribution to the exact vertex function. Of
course, this problem should be further investigated
in connection with higher-order perturbation ap-
proximations {cf., below); a rough estimation seems
to confirm the guess but we have not analyzed the
problem in detail. The spectral function Q(m, g%)
in (2.45) is related to the spectral function P (m, g,2)
of the exact unrenormalized proper self-energy

Kip) = [ dmge? Pim, g2/ (p—m)

by Q(m, g%) =P[m, g2 2" (g*) 1, g2 =Z(g") g,* and
the exact unrenormalized propagator G,=ZG is
given by Gy ={(p— M ~ K + 6M)™1 with 6M = K(M).

The higher-order perturbation approximations
@n(m, g%) (=polynomial in g2) to Q(m, &%) do not
decrease sufficiently rapidly for m — o . Hence,
introducing an auxiliary cutoff A, according to
Q.— Q. 1,2, the axiomatization of the n-th order
approximate theory can be performed as that of the
bubble approximation Q,=¢, =¢. In particular,
substituting @, «,? for @ in (2.49) gives rise to a
critical value g." (%), and a continuation of the spec-
tral function ;" of the approximate cutoff propaga-
tor beyond g, gives, after passing to the [imit
/~> 0, the axiomatized approximation to the exact
propagator, G.", with spectral function o/*(m, g%).
From the axiomatic formulation of field theory one
knows that the spectral function in the propagator
—and not the absorptive part of the self-energy --
is the primary quantity that determines the dynam-
ical properties of the system. As in the case of the
axiomatized bubble approximation, the approximate
propagator G.* contains a definite form factor
F,(m, g%) and belongs to a Hamiwtoxian H, = H'[F,]
with form factor F,(x, g*) where F,— 1 and ¥,— ¢
for g%~> 0. It is important to notice that in calcu-
lating, e. g., the next higher approximation to the
self-energy, viz. g®Q,=g%p+g*0.(m), one could
already use the axiomatized bubble approximation
Go rather than G, so that g, actually becomes a
functional of F, gy(m)— o0, [m, F(m,g%)]. This
procedure —including also the correspondingly axi-
omatized fermion propagator —can in principle be
iterated. However, except the axiomatized iterated
bubble approximation G, , probably none of the va-
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rious modifications will lead to higher approxima-
tions G.* which are practically useful. Nevertheless.
it is not impossible that a detailed analysis would
give an indication whether the minimum of the
function go2(g?) increases or decreases if higher
approximations are taken into account.

If the exact local theory exists. that is to say if
the exact vertex function (more precisely, g Q)
vanishes for infinite momentum transfer. the se-
quence of form factors F, must tend to d(z) and
the sequence of nonlocal interaction HamiLtonians
H'[F,] consequently will tend to the local Hasmic-
toxian H = H'[#]. The cuestion of convergence —
and the g2-domain for which it takes place —is of
course as open as that of the behaviour of the exact
vertex and at the present time we can only assert
that F, — & for g2->0 and for any finite n. At any
case, it is clear that if the exact theory exists, then
the appearance of the form factors in the approxi-
mate Hamivtonians is only a transitory aspect of the
approximation scheme and the physical effects of
the form factors F,. F, will finally be transferred
into the exact vertex function or into the “internal”
form factors defined by the latter. On the other
hand, if the exact vertex part does not have the
properties required by axiomatics. then our formal-
ism supplies a definite nonlocal theory of which the
local (but axiomatically inconsistent) theory may
be an asymptotic representation for g'— +0. In
cither case can the form factors F = F, and F, be
viewed as playing the role of a vertex function or
that of a contribution to it. That the form factors
actually deseribe the cloud and charge structure of
the physical particles has already been meationed in
the introduction. We shall come back to this ques-
tion in sections 3 and .

Let now I#,/G, be the approximate {renormaliz-
ed) seli-energy of the hoson which results from
(2.45) by substituting there ¢, for Q. In calculat-
ing @, one may already use the “lower-order™ ax-
C.ipy with m<n-1.
Then the corresponding ghost propagator is obtain-
ed from (2.47) with I replaced by 7 :

(A}”lp) = Gyip)ill

iomatized propagators

Wip.gr]. 1250

Under very general assumptions on ', (they will

be discussed in T1) the axiomatized “w-th order”

propagator takes {in analogy with (2.18) and
{2.30)} the form
Cop) =GPy =2 = pu) (2.51)

W. GUTTINGER UND J. A. SWIECA

where Z.,} is the corresponding axiomatized approx.
imation to the exact Z7! and py,(g?) is the ghost
pole. i. e.. the solution of the equation

Ga(pon) /G (pou) =0.
Z.,) isgiven by
Zed = (dpoa/dg®) [ (pu. — M) W, (py.- 8°) /9%
— [ (pon— M) OW 4 (pos- £)/3pun] ~" (2.33)

in analogy with (2.38).
If. in particular, ¥, (p, g%) is the n-th order per.
turhation theoretical expression. then

(2.52)

IFoip, €)= g2 I (p) (p— M) for @ — + = (2.34)
and it follows that
Z,'.'Hl-m‘»l for g"’——.\-— +— x ., (2.55)

The implication of this result will be discussed in
the next section. To prove (2.53), one observes that
from (2.52) and (2.54) it follows that for g2 — oo’

Puy = [g"'z"./](M)] ~M+olg ™) (2.56)
whence
S, (pu- 8 Bpu = g [/ (M) —0(1)]

~d[leg f(M) ]/dM - 0(1)
and, therefore.
Zob=[11g M) ~oig ™)) S, Opu.]
=1=x0(l)

for g — — ~. Here we have used the fact that. for
N

o (g8 — . {(2.57)

3. Properties of the Theory

Most of the qualitative properties of the axiomat-
ized theory have already been anticipated in the
detailed discussion given in section 1. Referring to
this section. we give in what follows a brief account
of the relevant quantitative results that lend support
to the interprelation given earlier. They follow di-
rectlv by inserting the explicit expressions for o(m)
into the propagators. {orm factors and nermaliza-
tion constants.

3.0, Singular Structure and Asymplotic Properties

In the limit m — ~. F behaves according to

Fim,g*) =~ (Z. ' g*logm)~L (3.1)

If g2 is sufficiently small, Fzz(gy2logm) ! for
2> 0. m— ~ . In the limit of small g#{g*— +0}.
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Z. ks given by fows from (2.51) that
Lo () —exp(— g% (3.2) CoxC P00 Fy 1
where go =1 (3.3) asvmptotically for g— +0. (3.7

in hoth the Lee model and the relativistic case (cf.

also Ref. 3+ 4),

Since F and £, tend to zero for m— ~. con-
vergence is ensured for any finite order approxima-
tion if g2>0. In the Lee model, for =0 and
sufficiently small g* the equation for p, reduces to

[ 32— po) /(M — po)] log[ (x— p) | x— M) ] — g2

(3.4)

whence Z.'=g Y [1+ (M —x)iiz~p,) g2] lor
& — -+ 0. where py— — ~. On the other hand.
o> M for g8 — ~ in which case Z,— |. In the
relativistic case, the calculations are quite analogu-

. Ly . s
ous. g* increases monotonuously with increasing g2
(see Fig. 1 b) and

Zo > g 2g® for g 0. (3.5)

The charge of the cloud due to vacuum polarization
1= given by g - g, and. in vittue of the ahove results.
the theory describes not bare particles for g2 — +0
but elothed physical particles whose bare core’s
charge 1gy— g} becomes compensated by that of
the cloud as g — 0. Hence the size of the cloud
shrinks to the point occupied (or defined!) by the
bare particle. the charge densitv of the cloud in-
creases and finally “annihilates™ that of the rore.
the result being free physical point-particles which
do not interact with one another owing to their
strong zelf-interaction. Since one cannot pass in a
continuous way from g% -0 to g2>0. the free
theory has to he defined ax the limiting case
& — 0 of the theorv with interaction. This limil
is of course a non-uniform one and can only be
approached indefinitelv. Although the interaction
H'UF] remains different from zero in this limit.
according to (2431, the particle is characterized
0. Tt is
readily verified that in virtue of the logarithmic
hehuviour of the renormalized self-energy not only
has Z7' an essential singularitv at g2

by a [ree propagator: . — €, for &

0 but so
have also G . F and F and

Go~ G F~ 9. F = 1 asymptotically for g2 2 0.
{3.6)

This also holds for any “finite-order” approxima-
tion if JF, ilncreases logarvithmically for p— ~

Y, = (log p). loglog p ete.) in which case it fol-

One therefore may ask more generally for the struc-
ture of axiomatic field theories the propagators of
which have the ghost propagators of the conventio-
nal formally renormalized theories as asymptotic
representations for g* — + 0. This gives of course
2 class of axiomatic theories in contrast with the
unique theory obtained in this paper. One arrives at
our unique G." if one requires that the class of
axiomatie propagators G which are asymptotically
equivalent to G be restricted by the condition that
disc (G} = dise | A”} on the cut or. what is the
same. that the spectral function of the propagator
be-analytic in g*. By starting from the requirement
of asymptotic equivalence - in the sense of a physi-
cal correspondence principle — considerable infor-
mation about the high-energy behaviour of feld
theories can he obtained and a mathematically cor-
rect meaning can be given to the method suggested
by Repyoxp. Bocouivnov et al. for axiomatizing
propagators. Of course. the physical meaning of
such an approach — which has heen discussed by one
of us? —would remain obscure and could only he
inferred (if at all) a posteriori. if one would not in-
clude form factors< into the Himiwroxian which do
not contribute to the formal series expansions in
powers of ¢*. At any case. the asymptotic properties
of the theory make it evident that 6 and H are
needed only for g2 — - 0 to determine the axiomat-
i theory, That H =3 % H' furnishes the bare core
onlv with a point-fike cloud in a formal expansion
of the S-matrix in povers of g 1s immediately seen
from the faet that 7.
explained above. us g — —0 and in power-series
expansion. whereps 7,

hecomes infinite. in the way

remains finite for g* 0.
in which vase the form factor Fin H'|F] =F* II’
is different from 4. The conventional perturbation
approach in fact fails since it treats all distances in
the same way irrespective of the magnitude of the
coupling. The prezented approximation scheme. on
the other hand. ensures a correct prolongation of
the cloud up to arbitrarily small distances. thereby
treating each distance in a wav compatible with the
presence of interaction in the considered space-time
region. As has been mentioned in section 1. g physi-
cally sensitive expansion hus then to be the one in

powers of gy F where one may neglect higher orders
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(in gy F) without destroying the particles cloud or
charge spread. It is obvious from the commutation
relations

([2:7dP (2, 1) /de, D (2, 2}]),

= lim [Co(e ) ime = Colan, ) ecr

with C.Jc=dGc/dt that the form factors F, F are
causal form factors.
In particular, we have
im lm [G,(2,8) — Go(z, —)]= —id(x) (3.8)
£ 0 gt +0
and

lim lim [Cc(x,t) —Gc(x, —~1)]

gr—+0t—0

(3.9)
= —id({z) lim (g,"%/g?).
gt — +0

Eq. (3.8) tells us that two interacting physical par-
ticles behave as if they were free if one lets first
shrink their clouds to the cores and then brings
them together. Eq. (3.9) refers to the case where
the interacting particles first are brought together
and then their common cloud shrinks to a point.
Clearly, the familiar statement that the renormalized
equal-time commutators are at least as singular as
the free one is now restricted to imply that they are
less singular than the one corresponding to the limit
of vanishing interaction. Eqs. (3.8), (3.9) are due
to the fact that the limiting processes g2 — 0 and
p —> oo do not commute with one another.

It is easily seen that mass renormalization is still
infinite for bosons in the axiomatized iterated bubble
approximation:

M =Ze [dm(m—M) oc(m, g% (3.10)
(£=2Zc=2Z;) 17 reduces to
oM~ g,™2 [ dm/{logm)?=oc0 . (3.11)
a

Generally, the exact boson mass renormalization will
always be infinite in any axiomatic theory the boson
propagator of which has a ghost-propagator as an
asymptotic representation for g2— 0. In particular,
this holds for G.”. We show this in II. On the other
hand, a generalization of the preceding formalism to
relativistic fermion propagators shows that Z;71 as well
as the mass renormalization for the fermions becomes
finite in any axiomatic theory the fermion propagator
of which has a ghost propagator as asymptotic repre-
sentation for g* — +0. This holds in particular for the

17 For a finite mass renormalization, this axiomatic formula
for M can be shown to be equal to the one given by
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axiomatized iterated bubble approximation of the ferm.
ion propagator -and likewise for higher approxima.
tions —of quantum electrodvnamics and neutral ps
meson theory. The reason for the fact that relativistic
fermions’ mass renormalization &3/ is finite in con.
trast with that of bosons (and with the M of the V.
particle} is the lower order degree of increase of the
fermion spectral function (cf. I1).

The approximation scheme we have suggested is
equivalent to one in which one starts from a {local)
Hawrcrovian, applies a formal (re-)normalization to
the physical states (cf. also section 4) obtained trom;
the Hamironian and constructs from these states the
renormalized axiomatic spectral function o(m, g%) di-
rectly. For this purpose, H' is needed only in the
asymptotic limit g%-> 0. While those approximations
maintain the correct cloud structure, this structure is
destroved if one attempts to approximate formally the
renormalized self-energy W or its absorptive part
8* Q(m. g%). The spectral function o of the exact theory
actually is the primary quantity in the axiomatic theory,

G(m’ gﬁ) 232 Q(m= g2) l G (m-' gg) 1\2

[cf. (2.48}], while the absorptive part g2 Q is the pri-
mary gquantity in the Hamicroxian formalism.

3.2. Physical Meaning of g*; Effective Charge

The renormalized charge g cannot directly be in-
terpreted as being the true physical charge.
The relation (2.33). viz.

Ze—>1 and Z,,->1 for g2— ~ ,

(3.12)

could lead one to believe that the vacuum is “freez-
ing-in” since its “polarizability” (g, —g)/g, tends
to zero for g*— o (although the successive ap-
proximations may be expected to be relizble only
for bounded values of g2; in the axiomatized LgE
model we have a definite problem to solve since our
first approximation already gives the exact theory).
However, the correct interpretation of (3.12) rests
upon the fact that. in the wav it was obtained. the
form factor F{x, g%) is not automatically normalized
to unity except for g>— +0. Indeed,

F—0, F—o0, [ Az F(z, g%)~>0

H[Fl=g F*xH—>0, G.—G, (3.13)

for g®— . This can directly be verified in the
Lz model and by indirect arguments, starting from
F— 0, also in the relativistic case. We therefore
have to replace F and g, in H'[F] =g, F % H by
the eflective form factor F, and the effective un-

Eq. (2.6 a) respectively by the generalization of this equa-
tion (cf., ID).
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renormalized charge g, , respectively:

4o
Fo(,6%) =F(zg) [| [deFirgl)|. (314)

—+ow
ge=28y" [dzF(x,g%). (3.15)

Then the effective renormalized charge g, , given by

+ oo
ge=gfd:cF(2:, g%, (3.16)
is to be interpreted as being the true physical charge.
Obviously.

gee(gg} =Z, (gg) gOag(ge): (3.17)

together with Z.— 1 for g2— ~ implies that go.2
is a two-valued function of g2 with go—> 0 for
g o and g2 12 g2~> 0 for g% 0. g,.% as func-
tion of g% is schematized in Fig. 2. It is clear then
that g% does no longer play the role of the charge,

!

2
Yoe

12
9a

Fig. 2. The function gue? (g¢2), parametrized by the
variable g2,

except for g2 — 0 where it coincides asymptotically
with g, Instead. g% is now to be interpreted as be-
ing an internal parameter of the theory which char-
acterizes the cloud structure of the physical particles
or their interaction spread. Hence, while for g&—0
a free theory results in which the bare core is being
compensated by the surrounding point cloud in the
way described above with H'[F] — gy H+0,
&0, gue—gy #0, the theory passes into an-
other free one for g2—» ~ in the sense that
H[F]—0. g, 0, gyo-> 0, Go— Gy, where how-
ever the density of the cloud decreases with increas-
ing cloud diameter. The function &2 (g%) is given
in Fig. 3; its maximum gives that value gy of g up
to which the approximation may be expected to be
reliable. The same value g1 also characterizes the
maximal value that can be reached by g.? consider-
ed as a function of g% A glance at Fig. 2 shows
that GeLL-Many and Low’s assertion ? &o = conslant
is confirmed in the limit of vanishingly small Ze,l.e.,
d"go.?/d(ge2)" =0 for all n>1 and Boo® ~> g2

1279

as g,®— 0. This follows immediately from the cor-
responding expressions without the subscript “e”,
which are readily proved, taking into account that
Fo— F for g — 0. However, the function go.? {g.2)
always remains in the physical domain Z71 2> 1.

T .

rd
93 s

2
Go.max

gi—»

0 'H
Fig. 3. The function g.2(g?).

From (2.55) we know that Z=Z.,—1 for
g>— o also if higher approximations are taken
into account and that, therefore, F,— 0, F,—0
and H,—> 0 for g2—> oo. Hence, the above re.
interpretation of the theory in terms of an effective
renormalized charge also applies to the higher axio-
matized approximations and the function gg.2(g.?)
will always be of the type schematized in Fig. 2. If
the approximate theories converge to the exact local
one, then the essential characteristies of the function
go.2 (g.2) —namely that its diagram consists of a
two-valued curve which starts at some point g2 =0,
gn.” and terminates at g,2 = g2 = 0 such that alwavs
Z =<1, — will be kept also for the exact theory. This
implies, however, that GeLr-Maxy and Low’s result,
viz., gi.® = g,'2 = constant independent of g% can
hold (if at all) only for 0 < g,2 < g2 if g2 is
finite and that the continuation of the function
&oe” (g.7), which is parametrized by the variable g2,
must consist either of the diagonal Z =1 down from
g = gy to gy =0, g.2=0 or of any other curve
inside the domain Z < I that reaches the origin with
Z =1, Hence, in contradistinction to Gerr-Maxx
and Low’s conjecture, there is no reason for exclud-
ing a finite g,"2,

On the other hand, while in the approximating
curves goo*(ge?) the variable g2 parametrizes the line
and runs {from zero to infinity (corresponding to
2ot =gy, g2=0 and gpe?=gl=0 respectively), it
must be borne in mind that g.2 must become equal to
2% if the exact theory is reached. Since, for a finite
g% &2 necessarily is bounded by g4"% whereas g2 is
not, g.* cannot egual g% for g% > £0'* except that either
8*=00 or the sequence converges nol properly or
something very particular will happen that makes g2

to stop if the straight line gge®=g, = const. reaches
the point characterized by Z=1. We were not able to
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clarify this problem: it might be expected that reach-
ing £=1 for g°=gy" implies the intervention of bound
states. Since the form factors effectively plav the role
of the vertex in the approximate theories, and vanish
for g — 2¢ one might conjecture then that also the
exact vertex part vanishes for sufficiently large values
of g if the interaction renders the vertex to vanish at
infinite momentum transfer in a accordance with the
requirements of an axiomatic theory. In this connection
it is interesting to note that in virtue of F — 4, F, — o
for g2— 0 andfor n— o, the variables g* and 1/n
play mathematically a role quite similar to the para-
meter £ in familiar representations of the delta func-
tion, d(x) =lim d(z, ¢). It might verv well be that a

e—=10

detailed analysis of the peculiar property for g?— =

of the approximating theories could give valuable in-
formations about the structure of the exact local theory.
For the time being, however, the results of this sub-
section merely imply that the approximate propagators
may by physically useful for suificiently small values
of g° only. This and the fact that g does no longer
play the role of a coupling if it becomes to large, also
prevents a discussion of strong coupling effects without
further specifications.

3.3. Potential between Charges 18

The finite structure of the axiomatized theory and
the singular type of physical particle obtained in
the limit g* — 0 may of course most easily be visu-
alized in terms of the potential between twa charges.
Taking quantum electrodynamics as basis. we ob-
tain from the axiomatized iterated bubble approxi-
mation G, (p.} the potential L{r} =371 (r) with

Vir)—g® [dtGoiz0)
&/ (3.18)

! o N

:g‘-’( Lo /dm2 o.(m? g*) exp( —m r))

r{.-; )
= (g [1+hir, g4

a
hir, g?) = ] dm? o (m?. g% exp{ —mr)

e (3.19)
where G.(r, 1) is the Fovrier transform of G, (p.)
and A (r, g%) gives the measure for the deviation of
the potential from the Covroms one. Obviously the
usual {formally renormalized non-axiomatized iterat-
ed bubble approximation i.e. G could not have
been used (it would change the sign of the potential
at some r=ry} while the non-iterated bubble ap-

with

¥ From here on, and also in section 4. we suppose m 1o have
the dimension of a recipracal length, In section 4 we shall
use the notation p—=p, w==r,
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proximation has been shown to be only a large
distance approximation. From
. 2
lim V' (r) = go3/r.

r—il

lim V' =g%/r

o

the usual interpretation of the deviation from the
Cotrous potential as being due to the charge cloud
around the bare core due to vacuum polarization
follows. That is, the original point charge evolves

into a extended object as the result of its interaction

with the electron-positron-photon vacuum, From
(3.19) and (2.37) it follows that

R(0,g%) =211
h(0, g%) ~ g,/2/g?  for

while for any finite r >0 the convergence factor
exp( —mr) in h(r, g%) and the fact that

and £— +0  (3.20)

o.(m,g%) ~ g2o(m) for g®— +0
implies that
hir,g®)r>0—0 for g2— +0. {3.21)
Hence. lim lim 2(r, g% =0 {3.22}
r—0 gt
and lim lim hi(r, g%) = ~. (3.23)

tf— At Fai}

This implies precisely that the charge of the core
becomes completely compensated bv that of the
cloud in the limit g— 0 where the size of the cloud
shrinks to the point occupied by the bare core. Ob-
viously {3.22) and (3.23) are equivalent to {3.8)
and (3.9} respectively. For sufficiently small g2 and

r=0 one has:
h (rs gg) = hﬂ(rﬂ g_)}
= f dm? g fo(m?)/mi]) exp(—mr).

a

{3.24)

The behaviour of %, for small end large r is given
by

ey —2g%[loglrm.) = 0(1)] for

rm,— 0,

(3.25)

o2&t A3/ exp{ —2rm, 3/ (rm )32 (3.26)

for rm,— =
respectively.

The substitution af & by A can be considered a good
approximation for r 3> [exp(—1/g%)]/m.. However,
the essential qualitative characteristics of &, for small r
will be present in i also for rZ [exp(—1/¢2)]/m. .

With those few formulas one can indeed verify all
the statements previously made about the cloud struc-
ture of the particles, such as the appearance of point
structures and divergences (Z,7'— oo} for g2 — 0,
It is likewise easily to be seen how the particle passes
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into a free uncharged one as g2 — 0 and similarly can
the apparent “freezing-in” of the vacuum be inferred in
the limit g% — ©© which has led us to the introduction
of the effective charge g.. The general behaviour of
hir,2*) for small g* is schematized in Fig. 4. The
radius ry is defined by fi(ry. g%) = 2~ 1. whenee

rp=me lexp(—1/g23 7). (3.27

hir,g?) 1
g;z /g2

Fig. 4. The function A(r, g%), with ¥ (ry =g>(1+h)/r.

In the neighbourhood of r;, £ has a logarithmic be-
haviour and the region (I), 0 < r<r,, gives the main
contribution to the renormalization effects, This domain
i= of course not attainable by a perturbation approach.
ry is defined by A(r,’, g2) = £ with 8~ g% whence

rg = mg L (3.28)

In the neighbourhood of ry’, & decreases exponentially,
and ry" is “stable” with respect to g2 — 0. It is clear
that the domain (II), ry € r <{r), gives the relevant
contributions 10 the radiative corrections to scattering
and to the Laun shift. In region (IlIy, r > r,. the ef-
fect of the polarization part of the cloud can be neg-
lected. As 2 — 0, h tends to zera in regions II and III
while the size of the region I shrinks to zero with a
simultaneous increase of h. If the effective charge g.
is introduced according to (3.16). h tends 1o zero
evervwhere as the structure parameter g>— ¢ while
the situation for g* — 0 remains unaltered (since then
g g

One might expect that the picture would change
completely if higher-order approximations are taken
inte account. However, it must be borne in mind that
the situation encountered with at g2 = 0 is already the
most singular case (in contrast with the perturbation
theoretical result!). Therefore. and since F-—~ 4§ for
g =10, we are not so pessimistic to believe that the
axiomatized iterated bubble approximation could not
be thrusted at least for small g% We observe that r,
could be identified with the gravitational radius R = R..
of the electron if 3 7 g* could be identified with the
fine structure constant. However, in virtue of the ex-
ponential in (3.27). a small change in 2 produces a
large change of ry even if 2 remains of the order one.
This clearly implies that the familiar guess 13, viz., that

Y D. I. Broknstsev, Fluctuation of Space-Time Metric, pre-
print, Dubna 1960.
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the gravitational radius of the electron follows from the
ghost pole py(g?) —with G-==D'y—, is completely un-
justified. In addition, we have seen that g does by no
means play the role of the electron’s charge. The only
reagonable argument is the one referring to ry =m."?
[Eq. (3.28)] whidh, by the choice 8= g%, characterizes
that domain [ef. (3.18] r= m. ! in which only 4-th
and higher orders of the charge play a role. One might
perhaps speculate as to the situation in case that a
“universal length™ of the order /=107 cm should turn
out to play a role in physics. This seems suggestive,
since the classical electron radius r,”" = ¢®/m. is of the
same order as the radius r,”'=g2/m, given by meson
theory. This situation, however, is not reproduced by
the axiomatized theory, and the only length which is
independent of the mass actually is given by the geo-
metric mean [, = (R 7y ) % where R=m x is the gravita-
tional radius of a particle with mass m and # the gravi-
tation-constant, In case of the electron, m=m. and
fp= 107* cm!? It is of course not impossible that the
gravitational radius —actually the only critical length
that so far appears to be incorporated in a consistent
way inte a physical theory —plays the fundamental role
one expects from it, last but not least since R increases
with m while r,” decreases with increasing m.

3.4. Free Particle Spread

We have thus far not explained whether or not the
variables  {or r) and ¢ ecan he considered as space-
time coordinates. The arguments in section 3.3 applv.
strictly speaking, only 1o fixed test charges bui we con-
sider the charge structure of the particles also as be-
ing associated with physical particles as a result of
their interaction with the vacuum. The resulting charge
spread is of course not to be confused with. but rather
superimposed over. the mechanical (mass-)spread the
non-interacting phvsical particles possess in conse-
quence of the combination of relativistic and quantal
properties {Wesssorr ™), This spread is usually inter-
preted as being the result of virtual pair creation if a
sufficiently accurate localization of the particles ix at-
tempted.

We are. however. not quite sure whether this inter-
pretation iz entirely consistent since the charge or mass
distribution due to this spread dees in no war depend
on the coupling. That is to sav. this spread of the free
particles should rather be explained entirely within the
frame of the free theory as being a4 purely kinematie
effect. In faet, localization of a particle in a small
domain prevents, in virtue of the uncertainty relation.
any precise knowledge of its velocity and thus of its
rest-system and, therefore. as a result of Lonexrz con-
traction. prevents any precise knowledge about the
space extent of the particle in the measuring svsten,
The argument is casilv put into formulae, giving a

V. F. Wesskorr, Phys, Rev. 536. 72 [1939],
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spread of the order®' r'=m L. One may associate
this spread with the bare quantum and superimpose the
(dynamical) spread of the cloud due to the interaction.

4. Cloud Structure and Interaction-Spread
of Physical Particles

In this section we represent physical particle
states in terms of bare ones to show that a divergent
wave function {re-)normalization £~ due to an in-
sufficiently decreasing vertex function (or, more
generally. absorptive part of the self-energy) implies
that the size of the cloud of virtual quanta in the
physical states reduces to the point occupied (or de-
fined) by the bare quantum (and vice versa). The
infinite Z7! that gives the point cloud and originates
from an insufficient decrease of g20(m, g% for
m—» oo, must of course be distinguished from the
infinite Z7' that would result in case g, were in-
finite and g* finite while g2 still decreases (as is
the case. e.g.. in the cutoff theory (1>0) for
g°— g1 in which case the cloud still would have
a finite extent. A finite Z7! on the other hand cor-
responds to an extended cloud and conversely and
only in this case is a consistent renormalization pos-
sible that leads to a theory of interacting particles.
These statements hold of course for both exact and
approximate theories, In the axiomatized theory de-
scribed in the preceding sections, Z71(g?) is finite
for £* >0 but tends to infinitv as g2— 0 since then
2 does no longer decrease sufficiently rapidly and
the formal power series expansion of Z7! has di-
vergent coefficients. From this one can understand
that the perturbation approximations reduce the
cloud to a point. It should not be considered sur-
prising then that the point cloud [ails to reproduce
any of the physical properties of the extended par-
ticle. in particular. that particles with a pointlike
cloud are not able to interact with one another (cor-
responding to a mapping of the theory into a [ree
one). Of course. in renormalizing formally a field
theory the above mentioned structures do not be-
come explicit since such an approach does not tell
anvthing about the cloud at small distances. We
introduce. for the sake of generality, a parameter u
such that Z=7%,=2Z(u) becomes a function of u

* Suppose the particle to have a spread AL, i e, that it
could be localized in a region of dimension not smaller
than <. The spread in the particle’s rest-system would be
Jde=Alf1—1%% (Ra=c=1). In virtue of the uncertainty
relation 1p Al 2 1, the rest-system is subject to a uncer-
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and that Z,"1< ~ for >0 but

Z, !>~ for u—0.

(4.1)

In accordance with what has been said before about
the divergeuce of Z7'. we suppose that Z,”! he
representable by an integral which diverges for
u— 0. the integrand however remaining finite. In
particular, u can represent the cutoff parameter 4 if
no axiomatic extension is performed. We shall, how
ever, mostly interprete u as heing the renormalize¢
{effective) charge of our axiomatized theory, u=g*
or u=g?>. '

The fact that in describing the cloud or interaction
spread of the physical particles we use a representation
of physical states in terms of bare ones is of course
subject to the familiar objection that the creation oper-
ators as well as the bare particle states are only formal
entities that do not correspond to physically observable
quantities. One might be tempted to avoid the bare.
particle concept at all by comparing the extended cloud’
of an interacting particle with the point-cloud defined
by the free physical particle via a representation of the
physical state of the former in terms of the states of
the latter one. Since, however, the support of the singu-
lar free dressed particles obtained in the limit g2 — +90
coincides with the point defined by the bare particle
one is left in the same boat witk the previous problem.
A mathematically more satisfactory approach might
perhaps consist in using functional concepts. For in-
stance, the size of the cloud of a particle cloud be de-
fined by the support of a test function ¢ (). Then the
peint-like cloud will be described by the limit ¢ —§
of the funetional

[6(). ¢ @)1 =6[¢"] ~ [ dz G(a) ¢ (a),
e, by limG[y] =lim[G(c'z), ¢ (2)] which is
- g—10
essentially chuivalen[ to the definition of Z714.

It is clear. that the arguments of section 3.4 con-
cerning the kinematical spread of the free particle
also apply to the following discussion, Tt is mainly
because of this spread that the {relativistic) creation
operators do not create parlicles “at a point 27,
but in a domain with “center” at .

1.1, Non-relativistic Theory

Let 0; denote the hare —physical vacuum and
let {p} be a physical one-particle state (momentum
P = p) with

Plp)=plp), H|p)=E!p) (4.2)

lainty by an amount Ar, with dp=M Ar/(1—7)*:
Hence, the minimal uncertainty is given by .Jr—1/M
since, in virtue of (1—u?) Y= [1-- (M AD 21", we have
Az=[ (A 2432 = 131
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where H=H,+ H  is the total Hamirtonian and let
us denote by a”{p). 6" (p). ¢ (p) the creation opera-
tors of a bare a-, b-, c-particle of momentum p.
Then we have for the state of a physical e-particle,
p. a . the representation

p-a)=a'(p}|0) (4.3)
[P fulp, P) B (p =) (5] 0) +. ..
the particular structure of which is given by the

selection rules, f, being a weight function, Intro-
ducing the states

:x,a):(:?.:t)’mfdpip,a)ex'p(—ipx)

and the operators {4.4)
a'(x) = (2a) 732 [ dpa’(p) exp(—ipz)
etc. we have obviously
r,a)=a () !0) (4.5)

= [hlz—a' 2" —2") b* () ¢" (27) do’ 4" | 0) +. ..

where

felzay = (22)792 [ dp”dp” f.(p". p") (4.6)
. s Y I2d
rexpl —i(p'a+p y)}.
The physical particle states thus far considered ob-
viously are the unrenormalized states. We now have
te renormalize (that is to say. to normalize) them.
From (1.3) the normalization constant { = wave
tunction renormalization) follows as being given by
1/j.p,a} :J =7V (y) = 7,12 (4.7)
=(1+ [dp f.(p,pH2+..)"12

and thus would seem to depend vn p. If Z were in-

dependent of p, the (re-)normalized physical states

will be defined by _
A (pyi0; =2, p,a)

with 0A(P) A (p)0y=05(p-p"). {-1.8)
A(2) 0 =2, 2, 4y
with  (0A°(2) A (0) 0) = d(x—2),  (4.9)

where the scalar product of two states js defined
according to
(4770, 4710))={04" 470 =(0.44,0).
(4.1
Hence. the renormalized physical creation operator
is
A (xy =Z,2 e (2) (4.11)
: J de’dx” s, (v =2’ 2" —2") b (2 ) +. ..

Sy (-T: y} = 2”112 /u (I: f)’) (112)

~where
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is a measure for the cloud structure or charge spread
of the physical particle.

Let us now suppose that f,(p, p') in (4.3) is in-
dependent of p:

fu(p- P,) :fu(p’)- 1‘1‘13)

Physically this assumption obviously means that

the (renormalized} masses m,, m;, of the a- and b-

particles are much larger than the mass m, of the c-

particle.

This also is clear since f,(p.p") behaves essen-

tially like
{E.llp) - {Eh(p"' P’) *E((P’J }] i bt
(PP/2m,—(p—p)32my—p?2m I ' = 2m p*

if my, 2 m.. my 2 m, . In consequence of this hypo-
thesis, the wave function remormalization Z, Equ.
(4.,7), does no loger depend on p.
From (5.13) it follows that
fu(x_z’s 2 —x") = (2 7[)3‘3_(35_3:’) frulz—2")
{(1.14)
where
fulx) = (23) 732 { dp fu(p) exp(—ixp). (4.15)
Hence
A () =Z, 2 a (2) (-1.16)
by [ 2R f w2y 2 L

The right side without further terms just reveals the
sittation given by the Lir model (a-=V. h=2X.
¢ = particlel. Let us now interprete A 1z} as the
operator which creates a physical particle whose
“center is at »". The cloud’s structure and size i=
defined through s, (x) =Z,'? f,(x). Confining our-
selves to the Lee models by keeping only the first
two terms on the right side of (1.16)
of more general schemes makes no difficulty — we
have from (1.5, 9)

Zt!w;" }‘ dP’ Zy ‘ fil(p’)::z: 1.

Zo— [de Z, fu(x)?=1. (1.17)

By hypothesis (1.1) we have in virtue of (1.7},

ca discussion

lim j dp' i (p.p) 2= (4.18)
HECR
and with {1.13) ‘ o
lim ] dp" i fp') P = <. {4.19)

]

This implies that under rather general assumptions
about f(p’) =lim f, (p) the function Hzx) =lim f, (x)
u—>1)

el
will be finite for 2 -£ 0. This is so, e. g., if

(Y= ip'» for p'— o, with »> 3
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Since according to (4.1) Z,— 0 for u— 0 it fol-
lows from (4.17) and (4.12) that for s,=Z,'?f,
we have

[dels, (@)= [ deZ,{fu(z) 2~ 1 for u—0.
(4.20)

Hence, for |s(z)}2=lim|s,(x) > it follows that
w0

fdxls(x)\ﬂzl and |s(z)?=0 for z+0. (4.21)

Therefore, |s(z)2=d(2). (4.22)

This proves our statement: The probabilistic cloud
density |s,(z)? reduces to a point-like quantity for
Z, 1 -»> . It is evident that the important point of
the consideration is the dependence of the cloud’s
size on the magnitude of u. In our case u = g° is the
renormalized charge, and the f,(z), f.(p) are read-
ily expressed in terms of F(z, g%), F(p,g") [cf.
(4.45) 1.

If we would not have imposed the condition
f~|p ” for p-» >, v = —3, we could of course
have arrived at an f(x) having a displaced singu-
larity which would lead to a displaced point-cloud
with density 6(r—x —d) rather than d(r—z")
what would contradict rotational invariance. On the
other hand, if

I3

fipy—"p "explid p'l)  for

we would have a cloud on the surface of a sphere
of radius d with center at the bare core. A field
theory giving such a particle would contain “d™ as
an “elementary length”. In addition one probably
would arrive at instantaneous action at a distance
and accausality, because of the peculiar structure of
the cloud.

4.2. Reluativistic Theory

We present the arguments in a rather schematic
way for the relativistic case. The essential point to
consider is now of course the non-equality of physi-
cal and bare vacuum.

The physical vacuum ! 0 ), defined by P.. |0} = 0.
can formally be expressed in terms ol the bare va-
cuum |0°}, defined by Po. 0y =0.
{we write f, == f}
IO>:{0’>ff(]pdp’dp,,f(p’p’p”)6(P+p,+p’,)

~a"(p) BT (p") Py | 0) ... (4.23)
where we have excluded interactions with derivative
coupling. The norm

(00 =exp[d(0) L]

according to

(4.24)

W.GUTTINGER UND J. A. SWIECA

is infinite: L is a divergent integral and 6{0) rep-
resents the infinite space volume. Of course, one can
formally introduce a normalized physical vacuum,

|0) =exp[ —8(0) L/2][0) (425

so that {0!0) = 1. In order to get a reasonable de-
finition of cloud or interaction spread, however, it
is essential to define the cloud structure in relation
to the physical vacuum, i. e., in such a way that the
term exp[ —d(0) L/2] does not enter into its de-
finition.

To this end, let us introduce the physical particle
state |p), with Pu'p)=p. pi. p2=m? through
a creation operator A" (p} such that the state of the
(relativistic) e-particle is given by

tp.ay=A"(p)0), A(p),0) =
{pralpa}=d(p-p),

[4(p). A" (p)) ]+ =0(p—p").

Similarly for the relativistic b-, c-particles. 4, 4*

may, for instance, be given through the Fourier
representation of the ingoing fields:

Ap(n) =272 [ dp[2 & (p)] 2 (1.27)
<[4 (pYexp{+ipex) + Alp) exp( —ip.a)].

(4.26)

Of course, the A4 used here are of an entirely dif-
ferent nature as compared with the operators used
in the non-relativistic case. The latter ones only in-
volved ereation operators. did not satis{v the com-
mutation relations and described essentially the
cloud of the physical one-particle state. On the other
hand. the relativistic operators generally are fune-
tionals of hare creation and annihilation operators
and describe, by iterated application to the vacuum
state 0. both scattering and one-particle states.
The essential point is now to define the cloud or
interaction spread in terms of physically *commen-
surable quantities”, To this end we introduce a
“bare with respect to physical vacuum™ state, de-
fined by
a'(p)05.a(p) 0) (#0)

(14.28)

and express these states in terms of the A-states
according to

a'(p) =a(pt A" (p) +... (4.29)

i being a c-number. We show that if the @', o are

the Fourier coefficients of the field 4(x,) at the

time t =0 which give the correct renormalized mass
m, i, e,

Afx) = (27} 7% [dp[2w(p)] ™' (4.30)

. -[a+{p) C—"‘ﬂ‘r-f-a([]) c-rip.r}
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[w(p} =Vp2+m?], then d(p) is a constant in-
dependent of p:

(4.31)

G(p) = constant=d .

It will turn out that

=712, (4.32)

If we would have made the expansion (4.30) in
terms of a “wrong” mass m’ by replacing

wip) =Vp2P+m? by Vp*+m? with m'<m
we would have arrived at an & depending on p. For
the proof we observe that

U™t A(p) U= Ve (p') fw(p) 1 A(p')
under the Lorextz rotation U/ =U'(L) where p.’ =
Lp.and U7' A(x.) U= A(x,). Then. with the nota-
tion

{0a"|B'0)=(0]aB |0)=(a"'0), B'[0)),
we have
(0" A(x) 4"(p) | 0) (4.34)

= {0 4(®") Vi(phjw(p) 4°(p)|0).

With (z,8) = (2", '} =0 we obtain from (4.33, 34),
a(p) =dip’). i. e, (4.31.32). It is readily verified
that the Z in (1.32) is identical with the one ob-

tained from the propagator G = (0 TA(z) A(z') 0)
and that

Z120{p—ph=10a(p) 1 47(p) O,

(4.33)

(1.33)

Therefore. Z is not a measure for the probability of
finding a hare in a physical state but gives a meas-
ure for the probability of finding a “bare wiht res-
pect to the physical vacuum” — state in a physical
state.
Let now f, . f, be defined according to
O (p)|B(p)C{(p") 0}
=2 R P 0(p-p =),
(Oalp) BY(p) C'(p”) 0} (1.37)
=2V p") dp+p +p”)
and let us consider, in particular, quantum electro-
dvnamics and take a-particle = phaoton. b -- elec-
tron, ¢ = positron (spin and polarization indizes are.
of course, neglected). The state Bip) C(p”10)
in (:1.37) represents then an electron-positron scat-
tering state. Let vs introduce
a'(z) = (2.7) 372 j dpa’(p) e"irz

B'(z) = (27) 32 J‘ dp B (p) e”ire,
C'(x) = (2 21) 92 } dp C7(p) eirz,

{4.38)
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Then it follows that

(0a"(z) | B* (') C*(z) 0y =2V f (x—2 2 2")

(4.39)
and
{(Oalz) B (2} C{z") 0) = 2172 fale—2', 2 —2")
{4.40)

where now of course Z=2; and
f1.2(1', y) = (2 ﬁ) —8/2 f il'z(p, p’) el'j'JI"f'fp'y .

We therefore may interprete Z;2f, and Z,2f,
as being a measure for the “interaction-spread” of
electron-positron scattering. And indirectly these
quantities give a measure for the cloud structure.
Indeed, Z;'# f{x—2'.x ") gives the probability
amplitude for finding a “bare with respect to physi-
cal vacuum”-photon at the point z in an electron-
positron state with the “centers” of the electron and
positron being at 2" and z”, respectively. Compron
scattering, via (0b"/B"A*0) and Z=Z, can be
treated in the same way.

From

(0a™(p) a"(p} 0; — (0alp') alp) 0} =8(p"— p)
(4.41)

and expanding via a set of physical intermediate
states it follows that

ZO(p' ~p) +Zidp” f{p—p".p")28(p —p) ...
=2 dp" - p-p” p")ES(p —p) = ip - p)
and therefore
Z fdpdp fiip.p) e, ..
—Z [dp'dp ' fy(p. p'h 2=

(142 a)
(22)%(1-2) 8(0).

Keeping only the first terms one obtains
Zz J dedy( filz,y) 2 — falo y) ®) —~ (1 =21 8(0)
f1.12h
and if now 771 — according to (1) — we have
dropped the index w! - then. assuming f,, f, to be
finite for » =<0, ¥ =0 as in the non-relativistic case,

we arrive at the result

Z [y =0 8(0)d(x) S(y).
Z fy2=c,8(0) d(x) () (4.43)

with ==l >0, ;>0

where 0(0) originates from the normalization (4.41)
and may of course be eliminated by the use of
ScHWaRTz testing functions. The d(x) d(y) term in
(4.43) clearly corresponds to a point cloud, or more



1286

precisely, to the fact that the interaction spread re-
duces to a pointas Z 1 — o.

It is clear that this approach differs in a very
fundamental way from the one of the non-relativistic
case. It is by no means possible to render the ana-
logy closer because the “bare with respect to the
physical vacuum™-states do not constitue an ortho-
gonal set. Nevertheless, the physical analogy of the
relativistic case as discussed here with the situation
encountered with in the discussion of the potential
in section 3.3 becomes clear if one remembers that
the spectral function o, which enters the potential is
just given by the square of a sum over physical in-
termediate states of the type B°C" 0) as given in
(4.37).

The structure functions

=2yt

i=1,2, (4.44)

are functionals of F(z,g?) or F(p,g?). While in
the non-relativistic case. and in particular in the
Lze model where

su(x) = — (g 2,124 =¥) (1.45)

fdke 55 Fw+x g2}/ (2w) Y2 (w+x-—-M)
with w=g% = (k4 1*) "2 we can describe 5, by
the functional derivative 47 (x)/d¢"(2"). no such
simple characterization is possible in the relativistic
case.

It 1s easy to establish the connexion between our
functions s;, s, and the familiar electromagnetic
c F=(D'y/Dy) I' = (G{Gy) I'  (resp.,
F=1(G/Gy) I') when the a-particle is a photon:
These form factors are given by

v j0) By (4.46)
== (Pllx 7}]]’)") ::D_)l "\pl’) l'ﬁ.plf;t.) E.J 1—‘ (p;.vy s p{;u) Uy,
010} ip! pi> (4.47)
- {pil - p:/) ﬁDJ’:‘ (pl’lu + P;lr) 1_(, 1 {I){) O 71'):"») Ly

form factors

where py,, p. are the momenta of ingoing b- and

c-particles {for example, nucleon and antinucleon

respectively) and D'} corresponds to G or G,
Defining the current j by

L (2,72 4) —ej (1.48)

** P. Fepersusa, M. L. Gorpsercer, and 8. B. Treimay, Phys.
Rev. 112, 642 [1938].

# There remains, of course, an arhitrary phasc exp(iq (1))
if one puts ['=3 F as in section 2, This phase obviously
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(with e=g) it follows immediately from (4.47)
that

(51 (Pnspe) + 82 (2. )]/ (27)32 (20)12 (4.49)
—e ZyV2 (pr, + p)a 7 <0,j(0) P P>

where w=1w (py, = po} = Pp+p. and, therefore,
81 (Py, P) + 82 (Py, P) = e Z42(27)32 (2 0) 12 D'
(Doy T 2o ve I (Pows — Pey v . (4.50)

5. Conclusion

In sections 2 and 3 we have shown that the form
factors F, F, can be interpreted as contributions to
the vertex function making use of the fact that ac-
cording to eq. (2.46) the absorptive part g° Q(m, g*%)
of the self-energy is bounded below by g2p ' I'/7 |2
Since however the contribution g2¢ I 2G| of
the two-fermion state to the spectral function

U(m,gg) :gz Q(m, g2} A

of the boson propagator (2.48) only gives a lower
bound. thiz does not mean that F. F, actually rep-
resent vertex parts except that £ in eq. {2.10) is
zero (as, for example. in the Lre model) *. That is
to say, although the F, always contribute to the
exact vertex, thev can be considered as vertex fune-
tions only within a prescribed order of approxima-
tion. The projection of “bare with respect to physi-
cal vacuum”-states onto physical particle states de-
scribed in section 4 confirms the above interpreta-
tion of the form factors from a more general point
of view: The explicit dependence of the structure
functions 52 =Z, f? on F and F (resp.. F,. F,) and
the fact that s; 2— & as Z7'~> ~ — what happens
in our case for g2— 0. where F— o —imply that
the form [actors actuallv give a measure {or the size
and cloud-structure (or charge-spread) of the in-
teracting physical particles as compared with the
point structure of the free uncharged particles .
This interpretation is lent additional support by the
intimate connection of the s; with the familiar elec-
tromagnetic _ fermion form factors F = (G Gy) I
[resp. (G /Go) I'] given by eq. (147),
F=(D'viDp) I in usual notation, Since G/Gy—

@

Z V=771 for p=£k>— o, it is obvious that the

1. e.,

does not contribute to the spectral function but may be
wsed to render I analytic in the cut complex plane,

* Those particles, as shown in sections 2 and 3, are never-
theless described by a non-vanishing interaction Haxivtox-

ian (go" H++0).
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electromagnetic form factors only vanish at infinite
momentum transfer simultanecusly with 1™ if Z71
is finite. representing point structures as do the s;
and F for g2 0. It is clear that the form factors
s; and F —and not I' — are the physically relevant.
measurable quantities upon which a theory must be
based and that these quantities actually describe the
spread caused by and associated with a non-zero
charge relative to the point structure associated with
a zero charge. In this sense our previous statement
about the role of the bare particles is to be under-
stood: The fact that the cloud of the physical par-
ticle shrinks to the point occupied by the bare quan-
tum as g®— 0 means that the operator of the bare
quantum only defines the point to which the size
of the physical particle would reduce if its charge
would tend to zero. That is to say. at least the co-
ordinate space variable introduced by the bare ope-
rators would remain if one attempts to express a
physical particle state with g2>0 in terms of physi.
cal states with g% — 0. thereby avoiding the explicit
use of the bare particle concept. One knows that
owing to the intrinsic kinematical spread due to the
combination of relativistic and quantal properties
the bare operators do not create particles at a point
in coordinate space. On the other hand. the physical
meaning of the coordinate space and its relation to
space-time is not quite clear since the actual descrip-
tion of the physical properties of particles — also
that of the cloud structure and charge spread! —is
based on energetical considerations. By starting
from operators in momentum space we have defined
the (flat) coordinate space via the usual Fovrier
operator. and thus have arrived at the above picture.
We cannot be sure a priori whether this Fornier
operator - - and. therefore. the Lorextz group — does
not merely represent an asymptotic concept valid
for fand defining) large distances and so might not
apply to the charge structure functions.

It is clear that the formalism discussed in the
preceding sections may also he applied to more com-
plicated systems. as for example to the ghost state
prablem in the nonlinear spinor theory and to four-
fermion interactions. The intimate connection of the
results so far reported with FEvxaax’s operator and

* We remark already at this oceasion that the divergent con-

tributions to the perturbation theoretical Z-faktor merely
reflect the fact that by an expansion in powers of &% one
actually represents the cloud structure function with cx-
tended carrier in terms of series of derivatives of delta-
funktions with point-like carrier at the origin. Such an cx-

proper-time calculus, functional methods and the
techniques of Vorrerra and Larpo—Davieewsky for
solving equations like that for the S-matrix without
having recourse to coupling constant expansions lies
on hand. The relation of those theories with the
asymptotic structures encountered in sections 2 and
3 is easily made explicit by representing the spectral
function ¢(m, g?) of the propagator by a Stiertsss
integral with respect to the coupling,

o(m, &%) = § dzr(m,2)/{gtz+1)

so that the propagator admits of a double represen-
tation.

G(p) :Go'i"ff dm dz rim,z)/{(p—m) (g2 z+1),

and applying the classical techniques of generating
functions. moment problem etc. %3, Such a represen-
tation seems to be essential if one attempts to ac-
count for the fact that one cannot, in general, treat
problems referring to coupling and interaction
strenghts in a way completely independent of the
space-time region in which the interaction takes
place.
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Appendix
L. Tn otder to prove that the propagator G.; (p} given

by (2.15} admits of the representation (2.22), et Lip)
be defined such that

Galp)=[p—M--L{p] L (A.1)
From (A.1} and (2.13) it follows that
, [ )
Lp)/ (p—1n2-=- }f dm oe; (m, g2) i (p—m) (A.2)

L ip—3) J dm o (m. g% (p 7m)j—1_

pansion of nonlocal quantities like the charge spread in
terms of local ones generaily gives rise to asymptotic ex-
panzions in momentum space. Cf., W, Gérrivers, Singular
Operations in Theoretical I*hysics, Sao Paulo 1957; Nuovo
Cim. 10,1 [1958] ; Nucl. Phys. 9, 429 [1959]
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mum of go®(g?), i.e, g5, in the second branch
(g > g.?) tends to g4 as A— 0 in which limit the
entire part of Fig. 1 a situated to the left of the mini-
mum degenerates into the straight line (g,2>0, g2=10).

3. The difficulties one would encounter by using an
arbitrary auxiliary cutoff may easily be inferred by
considering a cutoff of the type A2 (m, 1) =@ (11 —m)
where 1/2 > a [with @(z) =1 or =0 for z>>0 or
z<C0, respectively]. In this case, G;(p) will have an
additional pole for some p 2> 1/4 if g® lies in the inter-
val g2 < g? <{g? where g% is given by Eq. (A.14)
below, Let Gi{(p) be given by (2.9) and consider the
first-order renormalized self-energy Wii(p)/G, in the
cutoff theory with

Wi2(p) = (p—M) [ dm 03(m)/[(p—m) (m—M)?],
a (A.11)

80 that Ga=G,/ (1~ W11). W1:(p) is analytic in the cut
p-plane and is real and monotonuous for — co<lp<Zq
with

Wi gt [dmoi(m)/(m~M)t = g?/g.?
a

for p— — oo, Suppose that g® < g2 Since Wy <1
for —oo <Cp <\ M, G; has no ghost poles nor are there
poles for M <Cp < a where W1; <{0. On the cut, i. e.,
for ¢ < p <C 0o, we have in the limit ¢ — 0,

FWulptie)=(p-Mpo (A.12)

[ dm g® 0:(m)/ [{p~m) (m — M)?)

Tingolp)/(p—M)

and if 0,(m) does not vanish for ¢ <<m < oo, the
equation #11(p) =1 has no solution for g <p<C oo,
Ga(p) having therefore no additional poles. If, however,
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01 has zeros then the additional poles will appear. In
particular, with the above cutoff,

ei(m} =o(m) @A™ —m)

vanishes for m > 1/1. Then, for p > 1/4 the equation
W i:(p) =1 can be written as

14
8"’-sc"=fdm e(m)/[(p~m) (m—M)] (A.13)

and since ¢(m) 2 0 the r.h.s. of (A.13) is non-negative
and decreases from its value at p=1/i to zero as p
goes from 1/1 to infinite. Hence, in virtue of g% <C g.2,
the equ. (A.13) and therefore the equation ¥13(p) =1
will always have a solution for all g2 in the interval
g < g?<{g® where g% is given by

1i —

8= st [amo(m) /10 —m) (m- 1)1
a

(A.14)

Consequently, Gi(p) has an additional pole on the cut
side. The similar situation could arise from an auxiliary
cutoff which makes g; and, therefore, 6. to vanish at
only a discrete set of points what eventually could in-
troduce zeros of Gy on the cut, thereby invalidating
the arguments of Appendix 1. Since, however, neither
the absorptive part g{m) of the self-energy of the origi-
nal local theory nor the spectral function o. of the
axiomatized propagator contains zeros, there is no
reason for making the situation more complicated by
using an auxiliary cutoff — which in addition is only of
transitory nature —that gives rise to such additional
zeros. Those auxiliary cutoffis will therefore be ex-
cluded from our considerations. Obviously, the zeros of

the propagators that could appear on the cut are the
familiar CDD-zeros 26,

2% 1..CastILLeao, R.H.Daurrz, and F.]J. Dysox, Phys. Rev. 101,
453 [1956].





